四海网首页
当前位置:四海网 > 生活百科

2019年10大科学突破 刷新认知同时影响生活

2019-12-25 10:13:30来源:四海网综合

  6

  给量子纠缠拍摄首张“写真”

  7月,英国物理学家首次拍摄到一种量子纠缠的照片,这一结果有望促进量子计算等领域的发展。

  在量子力学领域,两个相互作用的粒子——例如通过分束器的两个光子,无论它们相隔多远,仍能以一种非常奇怪的方式“纠缠”在一起,瞬间共享它们的物理状态。这种联系被称为量子纠缠,是量子力学领域的基本现象之一,爱因斯坦曾将其称为“幽灵般的超距作用”。

  今天,虽然量子纠缠在量子计算和密码学等实际应用中大显身手,但这种现象从未被拍摄到。最新研究中,英国格拉斯哥大学的物理学家设计了一套系统,该系统朝着在液晶材料上显示的“非传统物质”发射了源于一个量子光源的一束纠缠光子,这些液晶材料会在光子通过时改变光子的相位。

  他们放置了一台超灵敏的相机,能够检测单个光子。在看到光子和与它发生纠缠的“双胞胎”同时出现时,相机拍摄了图像,首次为光子纠缠留下了珍贵的影像,得到的图像显示两个光子似乎相互反射并形成了一个指环形状。

  论文第一作者、格拉斯哥大学物理与天文学院保罗-安东尼·莫罗博士说:“这张图像是对自然基本属性的优雅展示,量子纠缠第一次以图像的形式被看到,这一结果可推动量子计算新兴领域的发展,并催生新型成像技术和设备。”

  7

  向“模拟大脑”迈进

  7月,英特尔公司展示了其最新的Pohoiki Beach芯片系统。其包含多达64颗Loihi芯片,集成了1320亿个晶体管,拥有800多万个“神经元”和80亿个“突触”。该芯片系统在人工智能任务中的执行速度要比传统CPU快1000倍,能效可提高1万倍,可在图像识别、自动驾驶和自动化机器人等方面带来巨大技术提升。该神经拟态系统的问世,预示着人类向“模拟大脑”这一目标迈出了一大步。

  与人脑中的神经元类似,Loihi拥有数字“轴突”用于向临近“神经元”发送电信号,也有“树突”用于接收信号,在两者之间还有用于连接的“突触”。英特尔表示,基于这种芯片的系统已经被用于模拟皮肤的触觉感应、控制假腿等任务。

  8

  最轻中微子质量被限定

  中微子无处不在,但由于它们几乎不与普通物质发生反应,很难被探测到,所以被称为“幽灵粒子”。尽管经过50多年追寻,科学家仍对它们所知甚少,甚至不知道它们的质量。

  8月,英国科学家限定了中微子家族中最轻成员的质量——不超过0.086电子伏特,约为单个电子质量的600万分之一。

  中微子的行为会改变整个星系和其他巨大天体结构的行为。基于此,研究人员从重子振荡光谱巡天调查中获取了约110万个星系的运动数据,结合其他宇宙学信息和地球上中微子实验获得的结果,将所有这些信息输入一台超级计算机,计算出了最轻中微子的质量(有3种中微子质量)。

  虽然物理学家可能永远无法精确地确定这3种中微子的质量,但他们可以不断接近。随着地球上的实验和太空测量的改进,中微子的质量范围将不断缩小,从而更好地解释整个宇宙是如何组合在一起的。

  9

  制出世界上最黑的材料

  9月,中美科学家报告说,他们研制出了一种比之前最黑材料还要黑10倍的材料。

  新材料由碳纳米管(CNT)阵列制成,可捕获99.995%的入射光,是迄今为止最黑的材料。

  这种新材料除了具有艺术表现力外,还可能具有实用价值,例如用于遮光罩中减少不必要的眩光、帮助太空望远镜发现系外行星等。

  研究合作者、上海交通大学材料科学与工程学院副教授崔可航表示,他们最初并不打算设计一种超黑材料,而是尝试让CNT在铝等导电材料上生长,但让CNT在铝上生长遇到了麻烦。

  铝暴露于空气中会被氧化,氧化物会覆盖铝,就像绝缘体一样,导致铝的导电和加热性能无法改善。于是,他们开始寻找去除铝氧化层的方法,结果发现盐(氯化钠)可以解决这个问题。

  他们先把铝箔浸泡在盐水中,去除氧化层;然后,将铝箔转移到无氧环境中,防止其再氧化;最后,将蚀刻的铝放入反应器中,并通过化学气相沉积法来生长CNT。

  “最令人吃惊的是得到的新材料极黑——该材料从各个角度吸收的入射光都大于99.995%。”崔可航说。

  10

  “万物DNA”让存储无处不在

  全球的数据量不断增加,传统的存储架构,如硬盘和磁带,越来越难以跟上数据存储的需要。随着这些装置逐渐达到存储极限,DNA被当作一种长期存储方案提了出来。

  过去的研究已经强调了DNA的持久性和存储***信息的能力,现在研究人员已经发现了一种前所未有的方式,可利用其持久性进行存储。

  10月,哥伦比亚大学著名专家、以色列计算遗传学家亚尼夫·埃尔利赫与苏黎世联邦理工学院科学家运用“万物DNA”特殊材料3D打印了一只“兔子”。

  他们先将常见的计算机图形测试模型“斯坦福兔子”的蓝图编码为DNA兼容格式,再将其存储在DNA分子中,进而将DNA分子封装在二氧化硅小球内,将小球嵌入可生物降解的热塑性聚酯中,最后使用所得的热塑性聚酯3D打印了“兔子”。

  之后,团队利用存储在“兔子”中的DNA进行复制:从3D打印兔身上截下一小块,解码其中包含的DNA分子。这样创造出了5代“兔子”,且没有任何信息损失,由前一代扩增的DNA被封装到下一代中;DNA蓝图一直保持稳定——即使第四代和第五代之间相隔了9个月。

  在第二项实验中,研究人员将一段有关华沙犹太区档案的视频编码进树脂玻璃中,再用该树脂玻璃制造普通的眼镜。只需一小块树脂玻璃,就能恢复其中隐藏的信息。

  研究团队由此提出了“万物DNA”概念,将信息藏于其中,让存储无处不在。

* 声明:本文由四海网用户yanfang原创/整理/投稿本文,生活百科栏目刊载此文仅为传递更多信息,帮助用户获取更多知识之目的,内容仅供参考学习,部分文图内容可能未经严格审查,欢迎批评指正。
相关信息